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Abstract: (1) Background: Three-dimensional (3D) facial anatomical landmarks are the premise and
foundation of facial morphology analysis. At present, there is no ideal automatic determination
method for 3D facial anatomical landmarks. This research aims to realize the automatic determination
of 3D facial anatomical landmarks based on the non-rigid registration algorithm developed by
our research team and to evaluate its landmark localization accuracy. (2) Methods: A 3D facial
scanner, Face Scan, was used to collect 3D facial data of 20 adult males without significant facial
deformities. Using the radial basis function optimized non-rigid registration algorithm, TH-OCR,
developed by our research team (experimental group: TH group) and the non-rigid registration
algorithm, MeshMonk (control group: MM group), a 3D face template constructed in our previous
research was deformed and registered to each participant’s data. The automatic determination of 3D
facial anatomical landmarks was realized according to the index of 32 facial anatomical landmarks
determined on the 3D face template. Considering these 32 facial anatomical landmarks manually
selected by experts on the 3D facial data as the gold standard, the distance between the automatically
determined and the corresponding manually selected facial anatomical landmarks was calculated as
the “landmark localization error” to evaluate the effect and feasibility of the automatic determination
method (template method). (3) Results: The mean landmark localization error of all facial anatomical
landmarks in the TH and MM groups was 2.34 ± 1.76 mm and 2.16 ± 1.97 mm, respectively. The
automatic determination of the anatomical landmarks in the middle face was better than that in
the upper and lower face in both groups. Further, the automatic determination of anatomical
landmarks in the center of the face was better than in the marginal part. (4) Conclusions: In this study,
the automatic determination of 3D facial anatomical landmarks was realized based on non-rigid
registration algorithms. There is no significant difference in the automatic landmark localization
accuracy between the TH-OCR algorithm and the MeshMonk algorithm, and both can meet the needs
of oral clinical applications to a certain extent.

Keywords: 3D face template; anatomical landmarks; non-rigid registration; non-rigid deformation

1. Introduction

The anatomical and morphological features of the human face are often considered
facial anatomical landmarks during the diagnosis and treatment of oral craniomaxillofacial
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diseases [1]. The clinical diagnosis, treatment planning, and evaluation of treatment
outcomes for oral and maxillofacial surgery, orthodontic, and prosthodontic patients are
often based on the morphological analysis of facial anatomical landmarks [2–11]. The
traditional methods mostly employ anatomical landmarks on the two-dimensional (2D)
image of the patient’s face for measurement. There are also reports of directly marking
the anatomical landmarks on the patient’s face for measurement [12]. However, 2D image
measurement lacks the depth information of 3D facial morphology, and directly marking
landmarks on the face has the potential risk of facial trauma. With the development of
three-dimensional (3D) optical non-invasive scanning technology, the application of facial
3D morphological data has increasingly gained clinical attention [13]. Automatic, accurate,
and rapid identification of facial anatomical landmarks based on 3D facial data is currently
a hot topic of research.

The existing automatic algorithms to determine anatomical landmarks using 3D fa-
cial data mainly include geometric feature algorithms [14–18] and artificial intelligence
algorithms [19–24]. Geometric feature algorithms help determine facial anatomical land-
marks by analyzing the changes in facial curvature characteristics and combining the prior
knowledge of facial geometrical morphology. This method is suitable when there are
significant changes in facial morphological features, and therefore, the number of anatomi-
cal landmarks that can be automatically determined is limited. The artificial intelligence
algorithm uses training set data for deep learning to automatically determine facial anatom-
ical landmarks. Based on the training set data with different annotation information, the
corresponding number of anatomical landmarks can be automatically determined. The
number and location of anatomical landmarks that can be determined by each algorithm
model lack flexibility, and improvements are necessary for clinical universality.

Our research team had previously reported a method to automatically determine
facial anatomical landmarks by combining 3D face templates and the non-rigid registration
algorithm MeshMonk [25] (referred to as “template method”). We preliminarily tested the
effect and feasibility of the “template method” using the 3D facial data of five individuals
with no significant facial deformity and that of five with mild mandibular deviation [26].
Compared with geometric feature algorithms and artificial intelligence algorithms, the
number of 3D facial anatomical landmarks that can be automatically determined by the
template method is not limited by facial anatomical features and has good flexibility.
Therefore, the template method has good application potential and clinical suitability in an
oral clinic. However, in our previous study, we did not conduct an in-depth evaluation of
the landmark localization accuracy of the template method.

Therefore, our research objectives are as follows: (1) Based on the non-rigid registration
algorithm (TH-OCR) developed by our research team, realize automatic determination
of 3D facial anatomical landmarks; (2) compare and analyze the automatic landmark
localization accuracy of TH-OCR and MeshMonk, and provide corresponding reference for
the application of the template method in an oral clinic.

2. Materials and Methods
2.1. Subjects

Twenty adult males who came to Peking University School and Hospital of Stoma-
tology were recruited. The inclusion criteria were as follows: (1) The facial morphology
was normal without obvious facial deformities. (2) No facial defects, traumas, no obvious
facial asymmetry. The exclusion criteria were as follows: (1) After oral clinical diagnosis,
suffering from facial deformities, traumas, defects, etc. (2) Patients who do not accept or
are not comfortable with optical scanning of the face. This study was approved by the
Bioethics Committee of Peking University Hospital of Stomatology (PKUSSIRB-202164079).
The purpose and procedures of this study were fully explained to all subjects, and written
informed consent was obtained before participation.
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2.2. Experimental Equipment and Software

Face Scan (3D-Shape Corp, Erlangen, Germany), a 3D optical sensor, was used to
collect the 3D facial data of the participants, using the following parameters: scanning
speed, 0.8 s; scanning accuracy, 0.2 mm; scanning angle, 270◦–320◦; the imaging principle
was raster scanning using 5 million charge-coupled device pixels, with approximately
10,000 data points and 20,000 triangular meshes.

The reverse engineering software Geomagic Studio 2013 (3D Systems, Morrisville,
NC, USA) was used to preprocess each participant’s 3D facial data and manually select
the anatomical landmarks. The Procrustes analysis (PA) algorithm in MATLAB R2019b
(MathWorks, Natick, MA, USA) was used to calculate the scaling factor of the 3D face
template. Meshlab 2020 (Open source, Tuscany, Italy) was used for data preparation
before applying the non-rigid registration procedures. The non-rigid registration algorithm
MeshMonk was used for deformation registration between the 3D face template of the
control group (MM group) and the 3D facial data of the participants. The non-rigid
registration algorithm TH-OCR developed by our research team was used for deformation
registration between the 3D face template of the experimental group (TH group) and 3D
facial data of the participants.

The algorithm MeshMonk runs in MATLAB R2019b, and TH-OCR runs in python 3.8.
The hardware configuration for the algorithm to run was Intel Xeon Silver 4210R, 2.40 GHz
GPU, and 192 GB of RAM.

2.3. Three-Dimensional Facial Data Collection and Processing

Face Scan was used to collect 3D facial data of adult males without significant facial
deformities. Instrument calibration was performed before scanning to ensure accurate
imaging. In accordance with the investigators’ instructions, the participants sat 135 cm in
front of the instrument with a natural head position while looking straight ahead with both
eyes and maintaining the Frankfort plane parallel to the ground. The participants’ face
was completely exposed up to the hairline and until the ears on the left and right, without
glasses or hair covering the face. Their facial expressions were naturally relaxed. After
scanning, the 3D facial data was saved in the OBJ format.

In the reverse engineering software Geomagic Studio 2013, the 3D facial data of the
participants were processed. Redundant data were deleted, and the range of retained data
included that up to the hairline, left and right to the tragus, bypassing the mandibular
angle, and along the mandible to the submental chin, with repair of the defect area on the
facial margin. The spatial pose of the 3D facial data was adjusted in the software to ensure
that the mid-sagittal plane was parallel to the YZ plane to achieve a natural head position.
The data were saved as OBJ files (FaceModel_Patient).

A single operator with clinical experience, who was also skilled in the operation of
Geomagic Studio 2013 software, selected 32 facial anatomical landmarks routinely used in
dental clinics, including the trichion, glabella, and pronasale, on the 3D facial data of each
participant. These included 10 midline and 22 bilateral points. The number, name, and
abbreviation of these anatomical landmarks are presented in Table 1. Three consecutive
selections were made, and the average coordinate value of the landmarks was considered
the reference value for manual selection (Point_Ref).

Table 1. Number, name, abbreviation, and index of facial anatomical landmarks used in this study.

Number Name Abbreviation Index

Midline facial anatomical landmarks
1 Trichion Tri 9401
2 Glabella Gb 9337
3 Nasion N 7905
4 Pronasale Prn 9136
5 Subnasale Sn 7799
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Table 1. Cont.

Number Name Abbreviation Index

6 Labiale superius Ls 6113
7 Labiale inferius Li 6039
8 Sublabiale Sl 4454
9 Pogonion Pg 3416
10 Gnathion Gn 2629

Bilateral facial anatomical landmarks (Right/Left)
11/12 Superciliary ridge Su 8557/7168
13/14 Endocanthion En 8246/7542
15/16 Exocanthion Ex 6818/5455
17/18 Pupil Pu 8354/7356
19/20 Zygion Zg 4921/3937
21/22 Alare Ala 8171/7435
23/24 Subalare Sal 6387/5673
25/26 Tragion Tr 545/286
27/28 Gonion Go 408/346
29/30 Crista philtre Cph 6222/5929
31/32 Cheilion Ch 4671/4203

2.4. Determination of 3D Facial Anatomical Landmarks

A flow chart depicting the experiment method is shown in Figure 1.
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Figure 1. Flow chart depicting the experiment method.

In a previous study, our research team had constructed a 3D face template (Face-
Model_Mask) based on the average 3D facial data of 30 Chinese adult males with good
facial symmetry, as shown in Figure 2. This 3D face template has 19,534 triangular faces
and 9856 vertices, of which 216 vertices are on the midline of the face, and the X coordinate
of all midline points is zero. There are 4820 vertices on the left and right sides, and the
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vertices on both sides are symmetric based on the midline of the face and have a one-to-one
correspondence [26]. Compared with the 3D face templates constructed in previous related
studies [25,27,28], the 3D face template in this study has the Chinese 3D facial anatomical
features. Its data range covers the whole face, including the positions of facial anatomical
landmarks commonly used in oral clinical practice, which provides the necessary data basis
for this study. Thirty-two facial anatomical landmarks shown in Table 1 were selected from
the 9856 vertices of the 3D face template, as shown in Figure 3. The vertex indices were
recorded, as shown in Table 1.
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lateral view; (b) frontal view; (c) left lateral view.

Based on the above-mentioned 3D face template and the open-source non-rigid reg-
istration algorithm (MeshMonk), we proposed a “template method” to automatically
determine the 3D facial anatomical landmarks. The principle of the template method was
as follows: MeshMonk was used to deform and register the 3D face template to the target
3D facial data. The vertex indexes before and after the deformation of the 3D face template
remained unchanged. Therefore, based on the recorded vertex indexes, the 3D coordinates
of the corresponding vertices on the deformed 3D face template can be automatically
obtained. In this way, the effect of automatically determining the anatomical landmarks of
the target 3D facial data was realized.
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In this study, based on the process of the template method, the non-rigid registration
algorithm (TH-OCR) developed by our research team was used to realize the automatic
determination of the 3D facial anatomical landmarks. Taking TH-OCR as the experimental
group and MeshMonk as the control group, the automatic landmark localization accuracy
of the two algorithms was analyzed and evaluated. The automatic landmark localization
steps of the TH-OCR algorithm were as follows (the data of one participant were used to
illustrate the process):

Step 1: Using the Meshlab 2020 software, a total of 8 facial anatomical landmarks,
including the bilateral tragion, endocanthion, pronasale, cheilion, and gnathion, were se-
lected on the 3D face template (FaceModel_Mask). The 3D coordinate data of the landmarks
was set as .pp and .csv files. Similarly, the above 8 anatomical landmarks were selected
on the participant’s 3D facial data (FaceModel_Patient), and the 3D coordinate data of the
landmarks was again saved as .pp and .csv files. The above 8 facial anatomical landmarks
were used for the initialization process of non-rigid registration.

Step 2: The landmark set coordinate data (.csv format) of FaceModel_Mask and
FaceModel_Patient was imported in MATLAB R2019b software. The Procrustes analysis
algorithm was used to calculate the overall scaling factor for FaceModel_Mask and to save
the scaling factor in .txt format.

Step 3: The FaceModel_Patient, FaceModel_Mask, their landmark set data (.pp for-
mat), and the overall scaling factor of FaceModel_Mask were imported into the TH-OCR
algorithm. The algorithm first performed rigid registration based on the 8 landmarks of the
two models and unified FaceModel_Patient and FaceModel_Mask to the same spatial scale
based on the overall scaling factor of FaceModel_Mask. Then, based on the radial basis
function, according to the corresponding relationship between the two sets of landmark
data, FaceModel_Mask was elastically deformed, and the 3D shape of FaceModel_Mask
was initially close to that of FaceModel_Patient. Then, based on the non-rigid ICP algorithm,
FaceModel_Mask was registered to FaceModel_Patient, so that it was further approximated
to the 3D shape of FaceModel_Patient. Based on the pre-determined 32 anatomical land-
mark indexes on FaceModel_Mask, the coordinates of these anatomical landmarks on the
deformed FaceModel_Mask were obtained. This resulted in the automatic determination
of 3D facial anatomical landmarks by the TH-OCR algorithm.

The algorithm flow in step 3 is shown in Figure 4. Part of the function formula involved
in step 3 was as follows:
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Rigid registration part:

F
(

r
q

)
=

1
K

K

∑
j=1
‖ft

j −R(qR)f
s
j − qT‖

2. (1)

where
{

ft
j | j ∈ [1, K]

}
is the set of landmarks of FaceModel_Patient;

{
fs
j | j ∈ [1, K]

}
is

the set of landmarks of FaceModel_Mask; qR stands for rotation matrix; qT stands for
translation vector; K is the number of landmarks. Rigid registration of FaceModel_Patient
and FaceModel_Mask was realized based on this function formula.

Preliminary elastic deformation based on radial basis function was as follows:

pnew
i = F(pi) =

K

∑
j=1

αjφ
(

pi − fs
j

)
+ a + bxi + cyi, i ∈ [1, N]. (2)

where pi = (xi,yi,zi) is the ith vertex of FaceModel_Mask; pnew
i is the ith vertex of Face-

Model_Mask after the initial elastic deformation; N is the number of vertices of Face-
Model_Mask; αj is the deformation parameter; a, b, c is the affine transformation parameter;
φ(r) = exp(−k‖r‖) is the radial basis function, where k is a positive parameter. The
preliminary elastic deformation of FaceModel_Mask was realized based on the correspon-
dence between the landmark sets of FaceModel_Patient and FaceModel_Mask and this
function formula.

Non-rigid registration part. Objective function for the non-rigid registration procedure
was as follows:

E = αEd + βEs + γEf. (3)

where Ed is the data term error; Es is the smoothing term error; and Ef is the feature point
registration error; α, β, γ is the weighting parameter.

Ed was defined as follows:

Ed =
N

∑
i=1

wi‖Xipnew
i −Di‖2. (4)

where Xi represents the affine transformation matrix; Di is the closest vertex on Face-
Model_Patient to pnew

i ; wi is the weight. If a corresponding point for pnew
i could not be

found on FaceModel_Patient, wi was set to 0, otherwise it was set to 1.‖·‖ takes the 2 norm.
Es was defined as follows:

Es = ∑
{(pnew

i ,pnew
j )∈edge(p)}

||Xi −Xj||2. (5)

where
(

pnew
i , pnew

j

)
is the line segment connecting pnew

i and pnew
j ; edge(p) is the set of all

edges in the FaceModel_Mask after the initial elastic deformation.
E f was defined as follows:

E f =
m

∑
l=1
‖XKl pKl

−DKl‖
2. (6)

where Kl(l = 1, 2, . . . , m) stands for landmarks.
The process of non-rigid registration was as follows:

1. Initialize Xi
0(i = 1, . . . , N), k = 0;

2. Based on a fixed set of α, β, γ parameters (in this study, α = 1, the iteration parameters
of β were: 20, 10, 10, 10, 5, 1, and the iteration parameters of γ were: 100, 100, 20, 5,
0.05, 0.005),
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1©. For each vertex pnew
i

k on FaceModel_Mask, find the closest vertex on Face-
Model_Patient as the corresponding point Di

k;
2©. Calculate Xi

k (i = 1, . . . , N) to minimize error E;
3©. Update FaceModel_Mask, the new FaceModel_Mask = {pnew

i
k+1|i = 1, . . . , N}

= {Xi
kpnew

i
k| i = 1, . . . , N};

4©. Repeat 1©– 3© until ∑N
i=1

∣∣∣∣∣∣Xk
i − Xk+1

i

∣∣∣∣∣∣< ε, k = k + 1 ;

3. Repeat step 2 after changing the parameters. Output the deformed FaceModel_Mask.

The above operation was repeated, and the TH-OCR algorithm was used to complete
the determination of anatomical landmarks on the 3D facial data of the 20 participants. The
coordinate values of 32 anatomical landmarks for each participant’s data were recorded as
the experimental group of this study (Point_TH).

Based on the above data, the non-rigid registration algorithm MeshMonk was used in
the control group to achieve the registration of FaceModel_Patient and FaceModel_Mask.
The determination of anatomical landmarks using the 3D facial data of 20 participants was
completed, and the coordinate values of 32 anatomical landmarks for each participant’s
data were recorded as the control group (Point_MM).

2.5. Measurement Analysis

For the 3D facial data of 20 adult males without significant facial deformities included
in this study, 32 facial anatomical landmarks manually determined by experts were used
as reference values (Point_Ref). The Euclidean distance between the coordinate values of
the 32 facial anatomical landmarks determined in the Point_TH group, Point_MM group,
and Point_Ref group were calculated for each participant and defined as the “landmark
localization error”. The mean and standard deviation of the landmark localization error of
the 32 facial anatomical landmarks in the Point_TH group and the Point_MM group were
calculated (average of 20 patients’ eponymous landmarks). A quantitative analysis of the
effect of the two algorithms in determining facial anatomical landmarks was performed.

The face is divided into three parts based on the horizontal plane passing through
the eyebrow point and the nasal base point: the upper face, middle face, and lower face.
There are 4 anatomical landmarks in the upper face, 17 in the middle face, and 11 in the
lower face. The mean and standard deviation of the landmark localization error of the
anatomical landmarks in the three face regions was calculated for each participant. In
addition, the facial area comprising the trichion, bilateral tragion, bilateral gonion, and
gnathion was defined as the facial marginal area in this study, and the area comprising the
remaining 26 landmarks was defined as the facial central area. The mean and standard
deviation of the landmark localization error of the anatomical landmarks in the marginal
and central areas of the face was calculated to investigate the effect of two algorithms on
the determination of anatomical landmarks in different regions of the face.

2.6. Statistical Analysis

To investigate the consistency and reproducibility of manually selected facial anatomi-
cal landmarks by the same operator, the intra-class coefficient (ICC) was calculated.

Using SPSS 21.0 software, the S-W normality test was performed on the mean values
of the landmark localization error of the 32 facial anatomical landmarks in the Point_TH
and Point_MM groups. The Friedman rank sum test was used to make statistical inferences
on the effect of determination of facial anatomical landmarks by the two algorithms. The
test level α of 0.05 indicated a statistically significant difference. We analyzed whether there
was statistical difference between the two methods.

3. Results

The ICC of the facial anatomical landmarks manually selected by the same operator
were all >0.95 (0.98–1.00), demonstrating high intra-operator reproducibility.
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For the 3D facial data of 20 individuals without significant facial deformity in this
study, the mean and standard deviation of the landmark localization error of the 32 facial
anatomical landmarks in the TH and MM groups was calculated, as shown in Table 2
and Figures 5 and 6. The average landmark localization error of the 32 landmarks in
the Point_TH group was 2.34 ± 1.76 mm; the error for the subnasale was the lowest
(0.81 ± 0.27 mm) and that for the right gonion was the greatest (5.10 ± 3.04 mm). The
landmark localization error was less than 2 mm for 53.1% landmarks and less than 4 mm
for 84.4%. The average landmark localization error of the 32 landmarks in the Point_MM
group was 2.16 ± 1.97 mm; the error for the subnasale was the lowest (0.80 ± 0.42 mm)
and that for the right gonion was the greatest (6.30 ± 3.09 mm). The landmark localization
error was less than 2 mm for 62.5% landmarks and less than 4 mm for 84.4%.

Table 2. Landmark localization errors for the 3D facial anatomical landmarks (mm).

Number Name TH Group (
−
x ± s) MM Group (

−
x ± s)

1 Tri 4.37 ± 3.15 4.58 ± 3.53
2 Gb 3.56 ± 1.86 3.17 ± 1.93
3 N 1.38 ± 0.69 1.28 ± 0.70
4 Prn 1.83 ± 0.93 1.59 ± 0.70
5 Sn 0.81 ± 0.27 0.80 ± 0.42
6 Ls 2.11 ± 1.25 1.65 ± 0.71
7 Li 1.60 ± 0.71 1.28 ± 0.52
8 Sl 1.53 ± 0.82 1.65 ± 0.67
9 Pg 1.69 ± 1.04 2.21 ± 1.15

10 Gn 2.35 ± 1.57 2.78 ± 1.89
11 Su-R 4.38 ± 2.12 4.05 ± 2.18
12 Su-L 4.09 ± 2.33 4.14 ± 1.82
13 En-R 1.24 ± 0.83 1.31 ± 0.91
14 En-L 1.30 ± 0.54 1.00 ± 0.68
15 Ex-R 2.56 ± 1.08 2.82 ± 1.49
16 Ex-L 2.97 ± 1.69 3.17 ± 1.45
17 Pu-R 2.13 ± 1.01 1.51 ± 1.02
18 Pu-L 1.93 ± 0.92 1.28 ± 1.15
19 Zg-R 2.14 ± 0.85 2.19 ± 1.47
20 Zg-L 3.70 ± 1.63 3.05 ± 1.00
21 Ala-R 1.32 ± 0.68 1.03 ± 0.58
22 Ala-L 1.61 ± 0.67 1.04 ± 0.37
23 Sal-R 1.80 ± 0.85 1.36 ± 0.71
24 Sal-L 1.64 ± 0.75 1.10 ± 0.52
25 Tr-R 2.13 ± 0.74 1.34 ± 0.90
26 Tr-L 2.70 ± 0.92 1.67 ± 1.68
27 Go-R 5.10 ± 3.04 6.30 ± 3.09
28 Go-L 4.46 ± 2.31 5.53 ± 2.45
29 Cph-R 1.83 ± 0.84 1.33 ± 0.50
30 Cph-L 1.71 ± 1.08 0.96 ± 0.52
31 Ch-R 1.53 ± 0.59 1.03 ± 0.59
32 Ch-L 1.52 ± 0.68 0.95 ± 0.57

Mean 2.34 ± 1.76 2.16 ± 1.97

Statistical analysis showed that the S-W normality test p-values in the Point_TH and
Point_MM group were all less than 0.05, which did not obey the normal distribution.
The Friedman rank sum test results showed that there was no significant difference in
the landmark localization error of the two algorithms for determining facial anatomical
landmarks (p > 0.05).
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The mean and standard deviation of the landmark localization error of the anatomical
landmarks in each facial region of the Point_TH and Point_MM group were calculated, as
shown in Table 3 and Figure 7. According to the measurement results, both algorithms are
more effective in determining facial anatomical landmarks in the middle face than in the
upper and lower face, and the determination of landmarks in the central area of the face
was better than that in the marginal area. The determination of landmarks in the central
area of the face was slightly better in the Point_MM group than in the Point_TH group, and
that in the marginal area was slightly better in the Point_TH group.

Table 3. Landmark localization error for the 3D facial anatomical landmarks based on facial area
(mm).

Area TH Group (
−
x ± s) MM Group (

−
x ± s)

Upper face (4) 4.10 ± 2.39 3.99 ± 2.47
Middle face (17) 1.95 ± 1.16 1.62 ± 1.22
Lower face (11) 2.31 ± 1.87 2.33 ± 2.27

Facial central area (26) 2.07 ± 1.43 1.81 ± 1.41
Facial marginal area (6) 3.52 ± 2.43 3.70 ± 3.04
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4. Discussion
4.1. Related Studies on Automatic Determination of 3D Facial Anatomical Landmarks

Facial anatomical landmarks play an important role in oral clinical diagnosis and
treatment, including preoperative disease diagnosis, treatment planning, or postoperative
evaluation of treatment outcomes. Therefore, determination of facial anatomical landmarks
has always been a subject of interest. With advances in medical technology, the facial data
of oral clinical patients has gradually transitioned from 2D images to 3D digital models,
and the determination of facial anatomical landmarks has gradually shifted from 2D to 3D.
The traditional method to determine facial anatomical landmarks based on 3D facial data
mainly involves manual selection, which requires effort and lacks adequate repeatability
and consistency [29,30].

In recent years, algorithm-based methods for determining facial anatomical landmarks
have been reported. These algorithms can be broadly classified as geometric feature
algorithms and artificial intelligence algorithms, as shown in Table 4. In 2009, Sun et al. [14]
proposed a 3D facial landmark determination method based on Shape Index features and
geometric constraints, which can automatically determine five facial anatomical landmarks,
including the endocanthion and pronasale. The average localization accuracy of this
method for facial landmarks is higher than 90%. In 2017, Liang et al. [15] proposed a 3D
facial landmark determination method involving HK curvature analysis combined with
prior knowledge of facial geometry, which can determine eight facial anatomical landmarks,
including the pronasale and cheilion. The method was tested on 3D facial data of neutral
expressions, and the average landmark localization error was 4.17 ± 2.53 mm. In 2019,
Arpah et al. [17] described the automatic determination of 10 facial anatomical landmarks in
the nasolabial region, including the pronasale and cheilion, based on the geometric feature
information of 3D facial data, and the average landmark localization error was 2.23 mm.
This method is mainly suitable for obvious facial features. The determination of anatomical
landmarks, such as the pronasale and cheilion, is good, but that of insignificant facial
features is not ideal. A limited number of facial anatomical landmarks can be determined
using these methods.

In 2017, Gilani et al. [21] proposed a method to determine facial landmarks based on a
Deep landmark identification network. It helped realize the automatic determination of 11
3D facial anatomical landmarks. The FRGC v2.0 face database was used for testing, and the
average landmark localization error was 3.0 mm. In 2018, Wang et al. [22] proposed a coarse-
to-fine approach to automatically locate the facial landmarks using deep feature fusion on
3D facial geometry data, with an average landmark localization error of 3.96 ± 2.55 mm
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in determining 14 facial landmarks according to the BU3DFE dataset. In 2019, Wang [19]
proposed a method for determining facial landmarks based on denoising auto-encoder
networks. This method can determine 22 landmarks on the face, with an average landmark
localization error of 3.71 mm. The above-mentioned automatic determination method of
facial anatomical landmarks based on an artificial intelligence algorithm is mainly realized
through data training. For the training set, face data with a certain amount of anatomical
landmark information are manually selected, and the intelligent algorithm trained using
it can output the same landmark information as the training set. The number of facial
anatomical landmarks that can be determined by such methods is not limited by the 3D
morphological features of the face. However, an intelligent algorithm trained by the training
set data of a single number of landmarks has limited flexibility. It is mainly reflected in
the following: it is impossible to determine the landmarks that were not included during
training, and the number of landmarks output by the algorithm is fixed.

Table 4. Results of related studies on the automatic determination of 3D facial anatomical landmarks.

Classification Researcher/Year Number of Landmarks Mean Error (mm)

Geometric feature algorithms

Vezzetti E [16]/2012 9 3.86
Liang S [18]/2013 10 3.12
Liang Y [15]/2017 8 4.17
Abu A [17]/2019 10 2.23

Artificial intelligence algorithms

Gilani SZ [21]/2017 11 3.00
Wang K [22]/2018 14 3.96
Wang L [19]/2018 22 3.71

Paulsen RR [23]/2019 11 2.42
Zhu Y [24]/2022 21 1.13

Template method This paper, TH-OCR 32 2.34
This paper, MeshMonk 32 2.16

4.2. Evaluation and Analysis of Automatic Landmark Localization Accuracy of the Template Method

MeshMonk is a non-rigid registration algorithm reported in 2019 [25]. This algorithm
can gradually deform and register the 3D face template to the target 3D facial data and
make them as similar as possible in 3D shape and spatial position. The number and index
of vertices of the 3D face template before and after deformation remain unchanged, but the
3D coordinates of the vertices are changed. Claes P’s research team has used MeshMonk
for 3D morphological analysis of the face and disease diagnosis analysis in related research,
with an initial attempt to automatically determine 19 anatomical landmarks of the 3D
facial data [31–34]. In this study, a radial basis function optimized non-rigid registration
algorithm (TH-OCR) was developed by our research team. The TH-OCR algorithm can
deform and register the 3D face template onto the 3D facial data of the subject, and the
RMS value of the 3D deviation between the registered template and 3D facial data of the
subject was less than 0.2 mm.

In this study, TH-OCR and MeshMonk were used to automatically determine 32 facial
anatomical landmarks for 20 samples of three-dimensional facial data without significant
facial deformities. The measurement results show that the automatic landmark localization
accuracy of TH-OCR and MeshMonk were 2.34± 1.76 mm and 2.16± 1.97 mm, respectively.
The stability of automatic landmark localization accuracy of TH-OCR was slightly better,
while the average landmark localization accuracy of MeshMonk was slightly higher. The
statistical results showed that there was no statistically significant difference between the
automatic landmark localization accuracy of TH-OCR and MeshMonk. By evaluating
the automatic landmark localization accuracy of the two algorithms in each area of the
face, it was found that the performance of the landmark localization accuracy of the two
algorithms was consistent. The landmark localization error in the middle face was the
smallest (1.95 ± 1.16 mm; 1.62 ± 1.22 mm), and the landmark localization error in the
upper face was the largest (4.10 ± 2.39 mm; 3.99 ± 2.47 mm). As can be seen from Figures 5
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and 6, the mean and standard deviation of the landmark localization errors in the TH and
MM groups were lower in the nasolabial region. The “template method” is suggested
to have good accuracy and robustness in determining the landmarks of significant facial
anatomical features (curvature changes significantly), indicating good clinical feasibility.
Relevant studies have shown that a landmark localization error within 2 mm is the limit
that an operator can achieve [23,35]. For the 32 facial anatomical landmarks in this study,
there were 17 and 20 landmarks in the TH and MM groups, respectively, and the landmark
localization error was less than 2 mm, which indicated that the “template method” could
be applicable in an oral clinic to a certain extent.

Compared with the above-mentioned geometric feature algorithms and artificial
intelligence algorithms, the template method has the following advantages: 1© According
to different needs, the index of the facial anatomical landmarks to be determined can be
flexibly recorded on the 3D face template, and the corresponding anatomical landmarks
of the target 3D facial data can be determined. Therefore, the number of landmarks that
can be automatically determined by the template method is not limited, and the flexibility
is good; 2© The template method does not require algorithm training and has lower
requirements for data and operating environment. Its automatic landmark localization
has high efficiency and good accuracy. Therefore, the template method may possibly be
applied and popularized in oral clinics.

4.3. Advantages and Disadvantages of the TH-OCR Algorithm

The “template method” can help to automatically determine 3D facial anatomical
landmarks, including two key parts: 3D face template and non-rigid registration algorithm.
In this study, the same 3D face template was used to test the effects of the TH-OCR
algorithm developed by our research team and the MeshMonk algorithm to determine 3D
facial anatomical landmarks. The measurement results showed that the mean and standard
deviation of the landmark localization errors in the TH group (3.52 ± 2.43 mm) were less
than those in the MM group (3.70 ± 3.04 mm) when determining landmarks in the facial
marginal area (Table 3). This may be because the radial basis function in the TH-OCR
algorithm optimizes the non-rigid ICP algorithm. Before deforming and registering the
3D face template to the 3D face data of the individual, the TH-OCR algorithm of our
research team preliminarily deforms the 3D face template based on the radial basis function
according to the eight manually selected landmarks. The 3D face template is preliminarily
close to the 3D shape of the subject’s 3D facial data to improve the speed and accuracy of
the subsequent non-rigid ICP algorithm in identifying the corresponding points between
the 3D face template and the subject’s 3D facial data. When deforming and registering
the 3D face template to the 3D face data of the subject, the TH-OCR algorithm is mainly
based on the non-rigid ICP algorithm. In the early stage of deformation registration, the
manually selected eight landmarks guide the deformation of the 3D face template. Later,
the TH-OCR algorithm controls the data term error, smoothing term error, and feature
point registration error of deformation registration by adjusting the weighting parameters
of the objective function terms (the constraints on feature point registration errors are from
strong to weak, and the constraints on data term errors and smoothing term errors are
from weak to strong), and finally completes the deformation registration of the 3D face
template. The addition of radial basis functions and the preliminary guidance of manually
selected marginal landmarks (bilateral tragion and gnathion) to the deformation of the
3D face template improve the deformation registration effect of the TH-OCR algorithm
on the marginal area of the 3D face template to a certain extent. Therefore, the TH-OCR
algorithm is slightly superior to the MeshMonk algorithm in determining the landmarks in
the facial marginal area. However, the measurement results of this study also showed that
when determining the 17 landmarks in the middle area and 26 landmarks in the central
area of the face, the mean landmark localization errors in the MM group were 1.62 mm and
1.81 mm, respectively, which were both better than those of the TH group. This reflects
that the accuracy of the MeshMonk algorithm in determining the landmarks in the central
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area of the face is slightly higher than that of the TH-OCR algorithm. The optimization and
improvement of the TH-OCR algorithm in this regard requires further research.

4.4. Limitations

The “template method” used in this study also has certain limitations in determining
facial anatomical landmarks. First, the determination of anatomical landmarks on the
edge of the face needs to be improved. Second, this study only evaluated the landmark
localization accuracy of the template method on 3D facial data without significant facial
deformities. The application effect of the template method on the 3D facial data with
different facial deformities needs to be studied further.

5. Conclusions

In this study, based on the TH-OCR algorithm developed by our research team, the
automatic determination of 3D facial anatomical landmarks was completed. For 3D facial
data without significant facial deformities, there was no significant difference between
the landmark localization accuracy (2.34 ± 1.76 mm) of the TH-OCR algorithm and the
landmark localization accuracy (2.16 ± 1.97 mm) of the MeshMonk algorithm, which
can meet the application requirements of an oral clinic to a certain extent. However, the
landmark localization accuracy in the facial upper and marginal area of the template
method was slightly poor, and it is necessary to optimize the 3D face template and non-
rigid registration algorithm. The applicability of the “template method” to patients with
different facial deformities needs further study.
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